Mixture of Clustered Bayesian Neural Networks for Modeling Friction Processes at the Nanoscale.
نویسندگان
چکیده
Friction and wear are the source of every mechanical device failure, and lubricants are essential for the operation of the devices. These physical phenomena have a complex nature so that no model capable of accurately predicting the behavior of lubricants exists. Thus, lubricants cannot be designed from scratch but have to be screened through expensive trial-error tests. In this study we propose a machine learning (ML) method that infers the relationship between chemical composition of lubricants and their performance from a database. Because no such database of desirable size and completeness is publicly available, we compiled one from molecular dynamics (MD) simulations of toy-model fluids nanoconfined between shearing surfaces. The fluid-friction relation is modeled by a Bayesian neural network (BNN), trained to reproduce the results for a training set of fluids. Due to the inhomogeneous data distribution it was necessary to carefully pick fluids for training and validation from the database with advanced clustering algorithms, rather than using the standard random selection. Different BNNs were then trained on the data clusters and their predictions combined into a mixture of experts. The model provides a prediction of lubricants performance as well as an error bar, at a fraction of the cost of MD. Because most values agree with the actual MD simulations within the estimated error σ, we conclude that the model is satisfactory. This method addresses the challenges brought by noisy, badly distributed, high-dimensional data that are likely to appear in reality as well, and it can be extended to real fluids, if a database could be provided.
منابع مشابه
DIFFERENT NEURAL NETWORKS AND MODAL TREE METHOD FOR PREDICTING ULTIMATE BEARING CAPACITY OF PILES
The prediction of the ultimate bearing capacity of the pile under axial load is one of the important issues for many researches in the field of geotechnical engineering. In recent years, the use of computational intelligence techniques such as different methods of artificial neural network has been developed in terms of physical and numerical modeling aspects. In this study, a database of 100 p...
متن کاملPrediction of monthly rainfall using artificial neural network mixture approach, Case Study: Torbat-e Heydariyeh
Rainfall is one of the most important elements of water cycle used in evaluating climate conditions of each region. Long-term forecast of rainfall for arid and semi-arid regions is very important for managing and planning of water resources. To forecast appropriately, accurate data regarding humidity, temperature, pressure, wind speed etc. is required.This article is analytical and its database...
متن کاملEstimation of Products Final Price Using Bayesian Analysis Generalized Poisson Model and Artificial Neural Networks
Estimating the final price of products is of great importance. For manufacturing companies proposing a final price is only possible after the design process over. These companies propose an approximate initial price of the required products to the customers for which some of time and money is required. Here using the existing data of already designed transformers and utilizing the bayesian anal...
متن کاملReview and Classification of Modeling Approaches of Soil Hydrology Processes
To use soil hydrology processes (SHP) models, which have increasingly extended during the last years, comprehensive knowledge about these models and their modeling approaches seems to be necessary. The modeling approaches can be categorized as either classical or non-classical. Classical approaches mainly model the SHP through solving the general unsaturated flow (Richards) equation, numericall...
متن کاملPrediction of true critical temperature and pressure of binary hydrocarbon mixtures: A Comparison between the artificial neural networks and the support vector machine
Two main objectives have been considered in this paper: providing a good model to predict the critical temperature and pressure of binary hydrocarbon mixtures, and comparing the efficiency of the artificial neural network algorithms and the support vector regression as two commonly used soft computing methods. In order to have a fair comparison and to achieve the highest efficiency, a comprehen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of chemical theory and computation
دوره 13 1 شماره
صفحات -
تاریخ انتشار 2017